作者
码海
责编
屠敏
前言
我们每天都在用Google,百度这些搜索引擎,那大家有没想过搜索引擎是如何实现的呢,看似简单的搜索其实技术细节非常复杂,说搜索引擎是IT皇冠上的明珠也不为过,今天我们来就来简单过一下搜索引擎的原理,看看它是如何工作的,当然搜索引擎博大精深,一篇文章不可能完全介绍完,我们只会介绍它最重要的几个步骤,不过万变不离其宗,搜索引擎都离不开这些重要步骤,剩下的无非是在其上添砖加瓦,所以掌握这些「关键路径」,能很好地达到观一斑而窥全貎的目的。
本文将会从以下几个部分来介绍搜索引擎,会深度剖析搜索引擎的工作原理及其中用到的一些经典数据结构和算法,相信大家看了肯定有收获。
搜索引擎系统架构图搜索引擎工作原理详细剖析
搜索引擎系统架构图
搜索引擎整体架构图如下图所示,大致可以分为搜集,预处理,索引,查询这四步,每一步的技术细节都很多,我们将在下文中详细分析每一步的工作原理。
搜索引擎工作原理详细剖析
一、搜集
爬虫一开始是不知道该从哪里开始爬起的,所以我们可以给它一组优质种子网页的链接,比如新浪主页,腾讯主页等,这些主页比较知名,在Alexa排名上也非常靠前,拿到这些优质种子网页后,就对这些网页通过广度优先遍历不断遍历这些网页,爬取网页内容,提取出其中的链接,不断将其将入到待爬取队列,然后爬虫不断地从url的待爬取队列里提取出url进行爬取,重复以上过程...
当然了,只用一个爬虫是不够的,可以启动多个爬虫并行爬取,这样速度会快很多。
1、待爬取的url实现
待爬取url我们可以把它放到Redis里,保证了高性能,需要注意的是,Redis要开启持久化功能,这样支持断点续爬,如果Redis挂掉了,重启之后由于有持续久功能,可以从上一个待爬的url开始重新爬。
2、如何判重
如何避免网页的重复爬取呢,我们需要对url进行去重操作,去重怎么实现?可能有人说用散列表,将每个待抓取url存在散列表里,每次要加入待爬取url时都通过这个散列表来判断一下是否爬取过了,这样做确实没有问题,但我们需要注意到的是这样需要会出巨大的空间代价,有多大,我们简单算一下,假设有10亿url(不要觉得10亿很大,像Google,百度这样的搜索引擎,它们要爬取的网页量级比10亿大得多),放在散列表里,需要多大存储空间呢?
我们假设每个网页url平均长度64字节,则10亿个url大约需要60G内存,如果用散列表实现的话,由于散列表为了避免过多的冲突,需要较小的装载因子(假设哈希表要装载10个元素,实际可能要分配20个元素的空间,以避免哈希冲突),同时不管是用链式存储还是用红黑树来处理冲突,都要存储指针,各种这些加起来所需内存可能会超过G,再加上冲突时需要在链表中比较字符串,性能上也是一个损耗,当然G对大型搜索引擎来说不是什么大问题,但其实还有一种方案可以实现远小于G的内存:布隆过滤器。
针对10亿个url,我们分配亿个bit,大约1.2G,相比G内存,提升了近百倍!可见技术方案的合理选择能很好地达到降本增效的效果。
当然有人可能会提出疑问,布隆过滤器可能会存在误判的情况,即某个值经过布隆过滤器判断不存在,那这个值肯定不存在,但如果经布隆过滤器判断存在,那这个值不一定存在,针对这种情况我们可以通过调整布隆过滤器的哈希函数或其底层的位图大小来尽可能地降低误判的概率,但如果误判还是发生了呢,此时针对这种url就不爬好了,毕竟互联网上这么多网页,少爬几个也无妨。
3、网页的存储文件:doc_raw.bin
爬完网页,网页该如何存储呢,有人说一个网页存一个文件不就行了,如果是这样,10亿个网页就要存10亿个文件,一般的文件系统是不支持的,所以一般是把网页内容存储在一个文件(假设为doc_raw.bin)中,如下
当然一般的文件系统对单个文件的大小也是有限制的,比如1G,那在文件超过1G后再新建一个好了。
图中网页id是怎么生成的,显然一个url对应一个网页id,所以我们可以增加一个发号器,每爬取完一个网页,发号器给它分配一个id,将网页id与url存储在一个文件里,假设命名为doc_id.bin,如下
二、预处理
爬取完一个网页后我们需要对其进行预处理,我们拿到的是网页的html代码,需要把script,style,option这些无用的标签及标签包含的内容给去掉,怎么查找是个学问,可能有人会说用BF,KMP等算法,这些算法确实可以,不过这些算法属于单模式串匹配算法,查询单个字段串效率确实不错,但我们想要一次性查出script,style,option这些字段串,有啥好的方法不,答案是用AC自动机多模式串匹配算法,可以高效一次性找出几个待查找的字段串,有多高效,时间复杂度接近0(n)!关于AC自动机多模式匹配算法的原理不展开介绍,大家可以去网上搜搜看,这里只是给大家介绍一下思路。
找到这些标签的起始位置后,剩下的就简单了,接下来对每个这些标签都查找其截止标签/script,/style,/option,找到之后,把起始终止标签及其中的内容全部去掉即可。
做完以上步骤后,我们也要把其它的html标签去掉(标签里的内容保留),因为我们最终要处理的是纯内容(内容里面包含用户要搜索的关键词)
三、分词并创建倒排索引
拿到上述步骤处理过的内容后,我们需要将这些内容进行分词,啥叫分词呢,就是将一段文本切分成一个个的词。比如「Iamachinese」分词后,就有「I」,「am」,「a」,「chinese」这四个词,从中也可以看到,英文分词相对比较简单,每个单词基本是用空格隔开的,只要以空格为分隔符切割字符串基本可达到分词效果,但是中文不一样,词与词之类没有空格等字符串分割,比较难以分割。以「我来到北京清华大学」为例,不同的模式产生的分词结果不一样,以github上有名的jieba分词开源库为例,它有如下几种分词模式
:我/来到/北京/清华/清华大学/华大/大学:我/来到/北京/清华大学:他,来到,了,网易,杭研,大厦:小明,硕士,毕业,于,中国,科学,学院,科学院,中国科学院,计算,计算所,后,在,日本,京都,大学,日本京都大学,深造分词一般是根据现成的词库来进行匹配,比如词库中有「中国」这个词,用处理过的网页文本进行匹配即可。当然在分词之前我们要把一些无意义的停止词如「的」,「地」,「得」先给去掉。
经过分词之后我们得到了每个分词与其文本的关系,如下
细心的你一定发现了,不同的网页内容有可能出现同样的分词,所以我们把具有相同分词的网页归在一起,如下所示
这样我们在搜「大学」的时候找到「大学」对应的行,就能找到所有包含有「大学」的文档id了。
看到以上「分词」+「倒排索引」的处理流程,大家想到了什么?没错,这不就是ElasticSearch搜索引擎干的事吗,也是ES能达到毫秒级响应的关键!
这里还有一个问题,根据某个词语获取得了一组网页的id之后,在结果展示上,哪些网页应该排在最前面呢,为啥我们在Google上搜索一般在第一页的前几条就能找到我们想要的答案。这就涉及到搜索引擎涉及到的另一个重要的算法:PageRank,它是Google对网页排名进行排名的一种算法,它以网页之间的超链接个数和质量作为主要因素粗略地分析网页重要性以便对其进行打分。我们一般在搜问题的时候,前面一两个基本上都是stackoverflow网页,说明Google认为这个网页的权重很高,因为这个网页被全世界几乎所有的程序员使用着,也就是说有无数个网页指向此网站的链接,根据PageRank算法,自然此网站权重就啦,恩,可以简单地这么认为,实际上PageRank的计算需要用到大量的数学知识,毕竟此算法是Google的立身之本,大家如果有兴趣,可以去网上多多了解一下。
完成以上步骤,搜索引擎对网页的处理就完了,那么用户输入关键词搜索引擎又是怎么给我们展示出结果的呢。
四、查询
用户输入关键词后,首先肯定是要经过分词器的处理。比如我输入「中国人民」,假设分词器分将其分为「中国」,「人民」两个词,接下来就用这个两词去倒排索引里查相应的文档
得到网页id后,我们分别去doc_id.bin,doc_raw.bin里提取出网页的链接和内容,按权重从大到小排列即可。
这里的权重除了和上文说的PageRank算法有关外,还与另外一个「TF-IDF」(